Algebraic Expressions- Answers

May 2019 Mathematics Advanced Paper 1: Pure Mathematics 1

1.

Question	S	cheme	Marks	AOs
2(i)	$16a^2 = 2\sqrt{a} \Longrightarrow a^{\frac{3}{2}} = \frac{1}{8}$	$16a^{2} - 2\sqrt{a} = 0$ $\Rightarrow 2a^{\frac{1}{2}} \left(8a^{\frac{3}{2}} - 1 \right) = 0$ $\Rightarrow a^{\frac{3}{2}} = \frac{1}{8}$	M1	1.1b
	$\Rightarrow a = \left(\frac{1}{8}\right)^{\frac{2}{3}}$ $\Rightarrow a = \frac{1}{4}$	$\Rightarrow a = \left(\frac{1}{8}\right)^{\frac{2}{3}}$	M1	1.1b
	$\Rightarrow a = \frac{1}{4}$	$\Rightarrow a = \frac{1}{4}$	A1	1.1b
	Deduces that	a = 0 is a solution	B1	2.2a
(ii)	$b^4 + 7b^2 - 18 = 0 \Longrightarrow (b^2 + 9)(b^2)$	$(2^2-2)=0$	(4) M1	1.1b
	$b^2 = -9,$	2	A1	1.1b
	$b^2 = k \Longrightarrow b^2$	$b = \sqrt{k}, k > 0$	dM1	2.3
	$b = \sqrt{2}$, $-\sqrt{2}$	2 only	A1	1.16
			(4)	
			(8	mark

M1: Combines the two algebraic terms to reach $a^{\pm \frac{3}{2}} = C$ or equivalent such as $(\sqrt{a})^3 = C$ $(C \neq 0)$

An alternative is via squaring and combining the algebraic terms to reach $a^{\pm 3} = k, k > 0$

Eg. $...a^4 = ...a \Rightarrow a^{\pm 3} = k$ or $...a^4 = ...a \Rightarrow ...a^4 - ...a = 0 \Rightarrow ...a \left(a^3 - ...\right) = 0 \Rightarrow a^3 = ...$ Allow for slips on coefficients.

M1: Undoes the indices correctly for their $a^{\frac{m}{n}} = C$ (So M0 M1 A0 is possible) You may even see logs used.

A1: $a = \frac{1}{4}$ and no other solutions apart from 0 Accept exact equivalents Eg 0.25 B1: Deduces that a = 0 is a solution. (ii)

M1: Attempts to solve as a quadratic equation in b^2

Accept $(b^2 + m)(b^2 + n) = 0$ with $mn = \pm 18$ or solutions via the use of the quadratic

formula Also allow candidates to substitute in another variable, say $u = b^2$ and solve for u

A1: Correct solution. Allow for $b^2 = 2$ or u = 2 with no incorrect solution given.

Candidates can choose to omit the solution $b^2 = -9$ or u = -9 and so may not be seen **dM1:** Finds at least one solution from their $b^2 = k \Rightarrow b = \sqrt{k}, k > 0$. Allow b = 1.414**A1:** $b = \sqrt{2}$, $-\sqrt{2}$ only. The solution asks for real values so if 3i is given then score A0

Answers with minimal or no working:

In part (i)

- no working, just answer(s) with they can score the B1
- If they square and proceed to the quartic equation $256a^4 = 4a$ oe, and then write down the answers they can have access to all marks.

In part (ii)

- Accept for 4 marks $b^2 = 2 \Longrightarrow b = \pm \sqrt{2}$
- No working, no marks.

May 2017 Mathematics Advanced Paper 1: Pure Mathematics 1

Question Number	Scheme		Marks
6.(a)	Replaces 2^{2x+1} with $2^{2x} \times 2$ or states $2^{2x+1} = 2^{2x} \times 2$ or states $(2^x)^2 = 2^{2x}$	Uses the addition or power law of indices on 2^{2x} or 2^{2x+1} . E.g. $2^{x} \times 2^{x} = 2^{2x}$ or $(2^{x})^{2} = 2^{2x}$ or $2^{2x+1} = 2 \times 2^{2x}$ or $2^{x+0.5} = 2^{x} \times \sqrt{2}$ or $2^{2x+1} = (2^{x+0.5})^{2}$.	M1
	$2^{2x+1} - 17 \times 2^{x} + 8 = 0$ $\implies 2y^{2} - 17y + 8 = 0*$	Cso. Complete proof that includes explicit statements for the addition and power law of indices on 2^{2x+1} with no errors. The equation needs to be as printed including the "= 0". If they work backwards, they do not need to write down the printed answer first but must end with the version in 2^x including "= 0".	A1*

	The following are exam	ples of acceptable proofs.	
	$2^{2x+1} = (2^{x+0.5})^2 = (2^{x+0.5})^2$	$\left(x\sqrt{2}\right)^2 = \left(y\sqrt{2}\right)^2 = 2y^2$	
	$\Rightarrow 2^{2x+1} - 17(2^x) + 8$	$=2y^2-17y+8=0$	
	$2y^2 = 2 \times 2^x$		
	$\Rightarrow 2^{2x+1} - 17(2^x) +$	$8 = 2y^2 - 17y + 8 = 0$	
	$2y^{2} - 17y + 8 = 0 \Longrightarrow 2(2^{x})^{2} - 17(2^{x}) + 8 = 0$		
	$\Rightarrow 2 \times 2^{2x} - 17(2^x) + 8 =$	$0 \Longrightarrow 2^{2x+1} - 17(2^x) + 8 = 0$	
	$2^{2x+1} = 2 \times 2^{2x} \Longrightarrow 2^{2x}$	$\times 2^{2x} - 17(2^x) + 8 = 0$	
	$\Rightarrow 2y^2 - 17$		
	Scores M1A0 as $2^{2x} = (2^x)^{2x}$	² has not been shown explicitly	
		al Case: $2^{2x+1} (2^x)^2 + 2^1$	
	$2^{2x+1} = 2^1 \times (2^x)^2$ or $2^{2x+1} = (2^x)^2 \times 2^1$ With or without the multiplication signs and with no subsequent		
	explicit evidence of the		
	Example of insufficient working: $2\pi t^{1} = (-\pi)^{2} = -2$		
	$2^{2x+1} = 2(2^x)^2 = 2y^2$ scores no marks as neither rule has been shown explicitly.		
		ule has been shown explicitly.	(2)
(b)	$2y^2 - 17y + 8 = 0 \Longrightarrow (2y)$	$-1)(y-8)(=0) \Rightarrow y = \dots$	
	()2 () (()	r	
		2^{x})-1)((2^{x})-8)(=0) \Rightarrow 2^{x} =	
	See General Principles for	er in terms of y or in terms of 2^x solving a 3 term quadratic	M1
	Note that completing the square	e on e.g. $y^2 - \frac{17}{2}y + 4 = 0$ requires	
	$\left(y\pm\frac{17}{4}\right)^2\pm q$	$\pm 4 = 0 \Longrightarrow y = \dots$	
	$(y=)\frac{1}{2}, 8 \text{ or } (2^x=)\frac{1}{2}, 8$	Correct values	A1
		M1: Either finds one correct value of x for their 2^x or obtains a correct	
		numerical expression in terms of	
	1	logs e.g. for $k > 0$	
	$\Rightarrow 2^x = \frac{1}{2}, 8 \Rightarrow x = -1, 3$		M1 A1
	$\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1, 3$	$2^{x} = k \Longrightarrow x = \log_{2} k \text{ or } \frac{\log k}{\log 2}$	MI AI
	$\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1, 3$		
	$\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1, 3$	$2^{x} = k \Longrightarrow x = \log_{2} k \text{ or } \frac{\log k}{\log 2}$ A1: $x = -1, 3 \text{ only.}$ Must be values	(4) (6 marks)

May 2016 Mathematics Advanced Paper 1: Pure Mathematics 1

3.

Question Number	Scheme	Notes	Marks
2	$9^{3x+1} = \text{ for example}$ $3^{2(3x+1)} \text{ or } (3^2)^{3x+1} \text{ or } (3^{(3x+1)})^2 \text{ or } 3^{3x+1} \times 3^{3x+1}$ or $(3 \times 3)^{3x+1} \text{ or } 3^2 \times (3^2)^{3x} \text{ or } (9^{\frac{1}{2}})^y \text{ or } 9^{\frac{1}{2}y}$ or $y = 2(3x+1)$	Expresses 9^{3x+1} correctly as a power of 3 or expresses 3^{y} correctly as a power of 9 or expresses y correctly in terms of x (This mark is <u>not</u> for just $3^{2} = 9$)	М1
	= 3^{6x+2} or $y = 6x + 2$ or $a = 6, b = 2$	Cao (isw if necessary)	A1
	Providing there is no incorrect work, allo Correct answer only i Special case: 3 ^{6x+1} or	mplies both marks	[2]
	Alternative using logs		1-1
	$9^{3x+1} = 3^y \Longrightarrow \log 9^{3x+1} = \log 3^y$		
	$(3x+1)\log 9 = y\log 3$	Use power law correctly on both sides	M1
	$y = \frac{\log 9}{\log 3} (3x + 1)$		
	y = 6x + 2	cao	A1
			2 marks

Question Number	Scheme	Notes	Marks
3.(a)	$\sqrt{50} - \sqrt{18} = 5\sqrt{2} - 3\sqrt{2}$	$\sqrt{50} = 5\sqrt{2}$ or $\sqrt{18} = 3\sqrt{2}$ and the other term in the form $k\sqrt{2}$. This mark may be implied by the correct answer $2\sqrt{2}$	M1
	$= 2\sqrt{2}$	Or $a = 2$	A1
			[2]
(b) WAY 1	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1
	$= \frac{12\sqrt{3}}{"2"\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{12\sqrt{6}}{4}$ Rationalises the denominator by a correct method e.g. multiplies numerator and denominator by $k\sqrt{2}$ to obtain a multiple of $\sqrt{6}$. Note that multiplying numerator and denominator by $2\sqrt{2}$ or $-2\sqrt{2}$ is quite common and is acceptable for this mark. May be implied by a correct answer. This is dependent on the first M1.		dM1
	$= 3\sqrt{6}$ or $b = 3, c = 6$	Cao and cso	A1
			[3]

		•	
(b) WAY 2	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} \times \frac{\sqrt{50} + \sqrt{18}}{\sqrt{50} + \sqrt{18}}$ or $\frac{12\sqrt{3}}{5\sqrt{2} - 3\sqrt{2}} \times \frac{5\sqrt{2} + 3\sqrt{2}}{5\sqrt{2} + 3\sqrt{2}}$	For rationalising the denominator by a correct method i.e. multiplying numerator and denominator by $k(\sqrt{50} + \sqrt{18})$	M1
	$\frac{60\sqrt{6}+36\sqrt{6}}{50-18}$	For replacing numerator by $\alpha \sqrt{6} + \beta \sqrt{6}$. This is dependent on the first M1 and there is no need to consider the denominator for this mark.	dM1
	$= 3\sqrt{6}$ or $b = 3, c = 6$	Cao and cso	A1
			[3]
(b) WAY 3	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1
	$=\frac{12\sqrt{3}}{2\sqrt{2}}=\frac{6\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{108}}{\sqrt{2}}=\sqrt{54}=\sqrt{9}\sqrt{6}$	Cancels to obtain a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1
	$= 3\sqrt{6}$ Or $b = 3, c = 6$	Cao and cso	A1
			[3]
(b) WAY 4	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1
	$\left(\frac{12\sqrt{3}}{*2^*\sqrt{2}}\right)^2 = \frac{432}{8}$		
	$\sqrt{54} = \sqrt{9}\sqrt{6}$	Obtains a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1
	$= 3\sqrt{6}$ Or $b = 3, c = 6$	Cao and cso (do not allow $\pm 3\sqrt{6}$)	A1
			5 marks

May 2015 Mathematics Advanced Paper 1: Pure Mathematics 1

Question Number		Scheme	Marks
1.(a)	20	Sight of 20. (4×5 is not sufficient)	B1
			(1
		Multiplies top and bottom by a correct	
(b)	$\frac{\sqrt{2}}{2\sqrt{5}-3\sqrt{2}} \times \frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}+3\sqrt{2}}$	expression. This statement is sufficient.	M1
	$2\sqrt{5} - 3\sqrt{2}$ $2\sqrt{5} + 3\sqrt{2}$	NB $2\sqrt{5} + 3\sqrt{2} = \sqrt{20} + \sqrt{18}$	
	(Allow to multiply top and bottom by $k(2\sqrt{5}+3\sqrt{2})$)		
	Obtains a denominator of 2 or sight of		
		$\left(2\sqrt{5}-3\sqrt{2}\right)\left(2\sqrt{5}+3\sqrt{2}\right)=2$ with no errors	
	$=\frac{\dots}{2}$	seen in this expansion.	A1
	_	May be implied by $\frac{\dots}{2k}$	
	Note that M0A1 is not possib	ble. The 2 must come from a correct method.	
	Note that if M1 is scored t	here is no need to consider the numerator.	
	e.g. $\frac{2(MR?)}{2\sqrt{5}}$	$\frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}+3\sqrt{2}} = {2}$ scores M1A1	

1	L		
	Numerator = $\sqrt{2}(2\sqrt{5}\pm 3\sqrt{2}) = 2\sqrt{10}\pm 6$	An attempt to multiply the numerator by $\pm (2\sqrt{5} \pm 3\sqrt{2})$ and obtain an expression of the form $p + q\sqrt{10}$ where p and q are integers.	M1
	v -(- vv - v	This may be implied by e.g. $2\sqrt{10} + 3\sqrt{4}$ or by their final answer.	
	(Allow attempt to multip	ply the numerator by $k(2\sqrt{5}\pm 3\sqrt{2})$	
	$\frac{\sqrt{2}}{2\sqrt{5}-3\sqrt{2}} = \frac{2\sqrt{10}+6}{2} = 3+\sqrt{10}$	Cso. For the answer as written or $\sqrt{10} + 3$ or a statement that $a = 3$ and $b = 10$. Score when first seen and ignore any subsequent attempt to 'simplify'. Allow $1\sqrt{10}$ for $\sqrt{10}$	A1
			(4)
			(5 marks)
	Alt	ernative for (b)	
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{1}{\sqrt{10} - 3} \text{ or } \frac{2}{2\sqrt{10} - 6}$	M1: Divides or multiplies top and bottom by $\sqrt{2}$ A1: $\frac{k}{k(\sqrt{10}-3)}$	M1A1
	$=\frac{1}{\sqrt{10}-3} \times \frac{\sqrt{10}+3}{\sqrt{10}+3} $ M1	Multiplies top and bottom by $\sqrt{10} + 3$	M1
	$=3+\sqrt{10}$		A1

Question Number	Scheme		Marks
7.(a)	$(4^x =)y^2$	$(4^x =)y^2$ Allow y^2 or $y \times y$ or "y squared" " $4^x =$ " not required	
	Must be seen i		
			(1)
(b)	$8y^{2} - 9y + 1 = (8y - 1)(y - 1) = 0 \Rightarrow y = \dots$ or $(8(2^{x}) - 1)((2^{x}) - 1) = 0 \Rightarrow 2^{x} = \dots$	For attempting to solve the given equation as a 3 term quadratic in <i>y</i> or as a 3 term quadratic in 2^x leading to a value of <i>y</i> or 2^x (Apply usual rules for solving the quadratic – see general guidance) Allow <i>x</i> (or any other letter) instead of <i>y</i> for this mark e.g. an attempt to solve $8x^2 - 9x + 1 = 0$	M1
	$2^{x}(\text{or } y) = \frac{1}{8}, 1$	Both correct answers of $\frac{1}{8}$ (oe) and 1 for 2^x or y or their letter but not x unless 2^x (or y) is implied later	A1

x = -3 x = 0	M1: A correct attempt to find one numerical value of x from their 2^{x} (or y) which must have come from a 3 term quadratic equation. If logs are used then they must be evaluated. A1: Both $x = -3$ and/or $x = 0$ May be implied by e.g. $2^{-3} = \frac{1}{8}$ and $2^{0} = 1$ and no extra values.	M1A1
		(4) (5 marks)

May 2014 Mathematics Advanced Paper 1: Pure Mathematics 1

Question Number	Scheme	Marks	
2.	(a) $32^{\frac{1}{5}} = 2$	B1	(1)
	(a) $32^{\frac{1}{5}} = 2$ (b) For 2^{-2} or $\frac{1}{4}$ or $\left(\frac{1}{2}\right)^2$ or 0.25 as coefficient of x^k , for any value of k including $k = 0$ Correct index for x so $A x^{-2}$ or $\frac{A}{x^2}$ o.e. for any value of A	M1 B1	
	$= \frac{1}{4x^2} \text{ or } 0.25 x^{-2}$	A1 cao 4 Marks	(3)

Notes

- (a) B1 Answer 2 must be in part (a) for this mark
- (b) Look at their final answer
 - M1 For 2^{-2} or $\frac{1}{4}$ or $\left(\frac{1}{2}\right)^2$ or 0.25 in their answer as coefficient of x^k for numerical value of k (including k = 0) so final answer $\frac{1}{4}$ is M1 B0 A0
 - B1 Ax^{-2} or $\frac{A}{x^2}$ or equivalent e.g. $Ax^{\frac{10}{5}}$ or $Ax^{\frac{50}{25}}$ i.e. correct power of x seen in final answer May have a bracket provided it is $(Ax)^{-2}$ or $\left(\frac{A}{x}\right)^2$
 - A1 $\frac{1}{4x^2}$ or $\frac{1}{4}x^{-2}$ or $0.25x^{-2}$ or but must be correct power **and** coefficient combined correctly and must not be followed by a different wrong answer.

Poor bracketing: $2x^{-2}$ earns M0 B1 A0 as correct power of x is seen in this solution (They can recover if they follow this with $\frac{1}{4x^2}$ etc.) **Special case** $(2x)^{-2}$ as a **final** answer and $\left(\frac{1}{2x}\right)^2$ can have M0 B1 A0 if the correct expanded answer is not seen The correct answer $\frac{1}{4x^2}$ etc. followed by $\left(\frac{1}{2x}\right)^2$ or $(2x)^{-2}$, treat $\frac{1}{4x^2}$ as final answer so M1 B1 A1 isw But the correct answer $\frac{1}{4x^2}$ etc clearly followed by the wrong $2x^{-2}$ or $4x^{-2}$, gets M1 B1 A0 do not ignore subsequent wrong work here

8.

Question Number	Scheme		Marks
6.	(a) $\begin{array}{c} 80 = 5 \times 16 \\ \sqrt{80} = 4\sqrt{5} \end{array}$		B1 (1)
	Method 1 (b) $\frac{\sqrt{80}}{\sqrt{5}+1}$ or $\frac{c\sqrt{5}}{\sqrt{5}+1}$	Method 2 $(p+q\sqrt{5})(\sqrt{5}+1)=\sqrt{80}$	B1ft
	$=\frac{\sqrt{80}}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1} \text{or} \frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$	$(p+q\sqrt{5})(\sqrt{5}+1)=\sqrt{80}$ $p\sqrt{5}+q\sqrt{5}+p+5q = 4\sqrt{5}$ p+5q=0 p+q=4 p=5, q=-1	M1
	$=\frac{20-4\sqrt{5}}{4}$ or $\frac{4\sqrt{5}-20}{-4}$	p + 5 q = 0 $p + q = 4$	A1
	$=5-\sqrt{5}$	p = 5, q = -1	Alcao
			(4) (5 marks)

Notes

(a) B1 Accept $4\sqrt{5}$ or c = 4 – no working necessary

(b)

(Method 1)

B1ft Only ft on c See
$$\frac{\sqrt{80}}{\sqrt{5}+1}$$
 or $\frac{c\sqrt{5}}{\sqrt{5}+1}$

M1 State intention to multiply by $\sqrt{5} - 1$ or $1 - \sqrt{5}$ in the numerator **and** the denominator

- A1 Obtain denominator of 4 (for $\sqrt{5} 1$) or -4 (for $1 \sqrt{5}$) or correct simplified numerator of $20 4\sqrt{5}$ or $4(5 \sqrt{5})$ or $4\sqrt{5} 20$ or $4(\sqrt{5} 5)$ So either numerator or denominator must be correct
- A1 Correct answer only. Both numerator and denominator must have been correct and division of numerator and denominator by 4 has been performed.

Accept
$$p=5$$
, $q=-1$ or accept $5-\sqrt{5}$ or $-\sqrt{5}+5$ Also accept $5-1\sqrt{5}$

(Method 2)

B1ft Only ft on c $(p+q\sqrt{5})(\sqrt{5}+1)=\sqrt{80}$ or $c\sqrt{5}$

- M1 Multiply out the lhs and replace $\sqrt{80}$ by $c\sqrt{5}$
- A1 Compare rational and irrational parts to give p + q = 4, and p + 5q = 0
- Solve equations to give p = 5, q = -1A1

Common error:

 $\frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} = \frac{4\sqrt{5}-20}{4} = \sqrt{5}-5$ gets B1 M1 A1 (for correct numerator – denominator is wrong for their product) then A0

Correct answer with no working - send to review - have they used a calculator? Correct answer after trial and improvement with evidence that $(5 - \sqrt{5})(\sqrt{5}+1) = \sqrt{80}$ could earn all four marks

May 2013 Mathematics Advanced Paper 1: Pure Mathematics 1

Question Number	Scheme		Marks
1	$\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(\sqrt{5}+1)}{(\sqrt{5}+1)}$	Multiplies top and bottom by a correct expression. This statement is sufficient.	M1
	(Allow to multiply top and	bottom by $k(\sqrt{5}+1)$)	
	= 4	Obtains a denominator of 4 or sight of $(\sqrt{5}-1)(\sqrt{5}+1) = 4$	Alcso
	Note that M0A1 is not possible. The 4 m	nust come from a correct method.	
	$(7+\sqrt{5})(\sqrt{5}+1) = 7\sqrt{5}+5+7+\sqrt{5}$	An attempt to multiply the numerator by $(\pm\sqrt{5}\pm 1)$ and get 4 terms with at least 2 correct for their $(\pm\sqrt{5}\pm 1)$. (May be implied)	M1
	$3 + 2\sqrt{5}$	Answer as written or $a = 3$ and $b = 2$. (Allow $2\sqrt{5} + 3$)	A1cso
	Correct answer with no wor	king scores full marks	
			4

Way 2	$\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(-\sqrt{5}-1)}{(-\sqrt{5}-1)}$	Multiplies top and bottom by a correct expression. This statement is sufficient.	M1
	(Allow to multiply top and bo	ottom by $k(-\sqrt{5}-1)$)	
	$=\frac{\cdots}{-4}$	Obtains a denominator of -4	A1cso
	$(7+\sqrt{5})(-\sqrt{5}-1) = -7\sqrt{5}-5-7-\sqrt{5}$	An attempt to multiply the numerator by $(\pm\sqrt{5}\pm1)$ and get 4 terms with at least 2 correct for their $(\pm\sqrt{5}\pm1)$. (May be implied)	M1
	$3 + 2\sqrt{5}$	Answer as written or $a = 3$ and $b = 2$	Alcso
	Correct answer with no work	ing scores full marks	
			[4]
	Alternative using Simulta $\frac{(7+\sqrt{5})}{\sqrt{5}-1} = a + b\sqrt{5} \Rightarrow 7 + \sqrt{5} = 0$ Multiplies and collects rationa a - b = 1, 5b - a Correct equations a = 3, b = 0 M1 for attempt to solve simultaneous equations	$(a-b)\sqrt{5} + 5b - a$ M1 al and irrational parts a = 7 A1 tions 2	,

Question Number	Sch	eme	Marks
3(a)	$8^{\frac{1}{3}} = 2$ or $8^5 = 32768$	A correct attempt to deal with the $\frac{1}{3}$ or the 5. $8^{\frac{1}{3}} = \sqrt[3]{8}$ or $8^5 = 8 \times 8 \times 8 \times 8 \times 8$	M1
	$\left(8^{\frac{5}{3}}\right) 32$	Сао	A1
	A correct answer with no	working scores full marks	
	Alter	native	
	$8^{\frac{5}{3}} = 8 \times 8^{\frac{2}{3}} = 8 \times 2^2 = 1$ = 32	M1 (Deals with the 1/3) 2 A1	
			(2)

(b)		One correct power either 2^3 or $x^{\frac{3}{2}}$.	
	$\left(2x^{\frac{1}{2}}\right)^3 = 2^3 x^{\frac{3}{2}}$	$\left(2x^{\frac{1}{2}}\right) \times \left(2x^{\frac{1}{2}}\right) \times \left(2x^{\frac{1}{2}}\right)$ on its own is not sufficient for this mark.	M1
	$\frac{8x^{\frac{3}{2}}}{4x^2} = 2x^{-\frac{1}{2}} \text{ or } \frac{2}{\sqrt{x}}$	M1: Divides coefficients of x and subtracts their powers of x. Dependent on the previous M1	dM1A1
		A1: Correct answer	
	Note that unless the power of x imp	lies that they have subtracted their	
	powers you would need to see evide	nce of subtraction. E.g. $\frac{8x^{\frac{3}{2}}}{4x^2} = 2x^{\frac{1}{2}}$	
	would score dM0 unless you see som		
	for the po	wer of x.	
	Note that there is a misconception that	t $\frac{\left(2x^{\frac{1}{2}}\right)^{3}}{4x^{2}} = \left(\frac{2x^{\frac{1}{2}}}{4x^{2}}\right)^{3}$ - this scores 0/3	
			(3)
			[5]

Jan 2013 Mathematics Advanced Paper 1: Pure Mathematics 1

Question Number	Scheme	Marks
2.		
	$(8^{2x+3} = (2^3)^{2x+3}) = 2^{3(2x+3)}$ or 2^{ax+b} with $a = 6$ or $b = 9$	M1
	= 2^{6x+9} or = $2^{3(2x+3)}$ as final answer with no errors or $(y =)6x + 9$ or $3(2x+3)$	A1
		[2]
		2 marks
	Notes	
	M1: Uses $8 = 2^3$, and multiplies powers $3(2x + 3)$. Does not add powers. (Just $8 = 2^3$ or $8^{\frac{1}{3}} = 2$ is M0	
	A1: Either 2^{6x+9} or $= 2^{3(2x+3)}$ or $(y=)6x+9$ or $3(2x+3)$	
	Note: Examples: 2 ^{6x+3} scores M1A0	
	: $8^{2x+3} = (2^3)^{2x+3} = 2^{3+2x+3}$ gets M0A0	
	Special case: : $= 2^{6x} 2^9$ without seeing as single power M1A0	
	Alternative method using logs: $8^{2x+3} = 2^y \Rightarrow (2x+3)\log 8 = y\log 2 \Rightarrow y = \frac{(2x+3)\log 8}{\log 2}$	M1
	So $(y =) 6x + 9$ or $3(2x + 3)$	A1 [2]

1	2	
т	2	•

Question Number	Scheme	Ma	rks
3. (i)	$ (5 - \sqrt{8})(1 + \sqrt{2}) $ = 5 + 5 $\sqrt{2} - \sqrt{8} - 4$ = 5 + 5 $\sqrt{2} - 2\sqrt{2} - 4$ $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point.	M1 B1	
	$= 1 + 3\sqrt{2}$ $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.	A1	[3]
(ii)	Method 1 Method 2 Method 3 Either $\sqrt{80} + \frac{30}{\sqrt{5}} \left(\frac{\sqrt{5}}{\sqrt{5}} \right)$ Or $\left(\frac{\sqrt{400} + 30}{\sqrt{5}} \right) \frac{\sqrt{5}}{\sqrt{5}}$ $\sqrt{80} + \frac{\sqrt{900}}{\sqrt{5}} = \sqrt{80} + \sqrt{180}$	M1	
	$= 4\sqrt{5} + \dots = (\frac{20 + \dots}{20})^{\frac{1}{10}} = 4\sqrt{5} + \dots$	B1	
	$= 4\sqrt{5} + 6\sqrt{5} = \left(\frac{50\sqrt{5}}{5}\right) = 4\sqrt{5} + 6\sqrt{5}$		
	$= 10\sqrt{5}$	A1	[3]
Alternative	$(5-2\sqrt{2})(1+\sqrt{2})$ This earns the B1 mark and is entered on epen as B1		
for (i)	$= 5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified e.g. $= 5 + 3\sqrt{2} - 2\sqrt{4}$ o.e	M1	
	For earlier use of $2\sqrt{2}$ = $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.	B1 A1	[3] narks
	Notes		
(i)	M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion may be implied by correct answer) – can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point	ion. (T	his
(ii)	A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or the second sec	uses	
	Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}$		
	B1 : (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20 \text{ or } \sqrt{80}\sqrt{5} = 20$ at any point Method 2. A1 : $10\sqrt{5}$ or $c = 10$.	if they	use
	N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before		
	Those who multiply initial expression by $\sqrt{5}$ to obtain $\sqrt{400} + 30 = 20 + 30 = 50$ earn M0 B	1 A0	

May 2012 Mathematics Advanced Paper 1: Pure Mathematics 1

1	2	
1		•

Question	Scheme	Marks
Number	$\left[(22)^{\frac{3}{2}}\right] = \left(\frac{5}{22}\right)^{\frac{3}{2}} = \frac{5}{(22)^{\frac{3}{2}}} = 2^{\frac{3}{2}} = \frac{5}{222768}$	
2. (a)	$\left\{ (32)^{\frac{3}{5}} \right\} = \left(\sqrt[5]{32}\right)^3 \text{ or } \sqrt[5]{(32)^3} \text{ or } 2^3 \text{ or } \sqrt[5]{32768} \\ = 8$	M1
1		A1 [2]
	$\left\{ \left(\frac{25x^4}{4}\right)^{-\frac{1}{2}} \right\} = \left(\frac{4}{25x^4}\right)^{\frac{1}{2}} \text{ or } \left(\frac{5x^2}{2}\right)^{-1} \text{ or } \frac{1}{\left(\frac{25x^4}{4}\right)^{\frac{1}{2}}}$ See notes below	
(b)	$\left\{ \boxed{\frac{4}{25x^4}} \right\} = \left\{ \frac{1}{25x^4} \right\} \text{ or } \left\{ \frac{1}{25x^4} \right\}^{1/2} $ See notes below	M1
	$= \frac{2}{5x^2} \text{ or } \frac{2}{5}x^{-2}$ See notes for other alternatives	Al
		[2] 4
	Notes	4
(a)	M1 : for a full correct interpretation of the fractional power. Note: $5 \times (32)^3$ is M0.	
	A1: for 8 only.	
(b)	Note: Award M1A1 for writing down 8.	
	M1: For use of $\frac{1}{2}$ OR use of -1	
	Use of $\frac{1}{2}$: Candidate needs to demonstrate the they have rooted all three elements in their bracket.	
	Use of -1: Either Candidate has $\frac{1}{\text{Bracket}}$ or $\left(\frac{Ax^{C}}{B}\right)$ becomes $\left(\frac{B}{Ax^{C}}\right)$.	
	Allow M1 for	
	• $\left(\frac{4}{25x^4}\right)^{\frac{1}{2}}$ or $\left(\frac{5x^2}{2}\right)^{-1}$ or $\frac{1}{\left(\frac{25x^4}{4}\right)^{\frac{1}{2}}}$ or $\sqrt{\left(\frac{4}{25x^4}\right)}$ or $\frac{1}{\sqrt{\left(\frac{25x^4}{4}\right)}}$ or $\left(\frac{\frac{1}{25x^4}}{\frac{1}{4}}\right)^{\frac{1}{2}}$ or $\frac{1}{\frac{5x^2}{2}}$	or $\frac{\frac{1}{5}x^{-2}}{\frac{1}{2}}$
	or $-\left(\frac{5x^2}{2}\right)$ or $\left(\frac{-5x^{-2}}{-2}\right)$ or $-\left(\frac{5x^{-2}}{2}\right)$ or $\frac{5x^{-2}}{2}$	
	• $\left(\frac{4}{25x^4}\right)^K$ or $\left(\frac{5x^2}{2}\right)^C$ where K, C are any powers including 1.	
	A1: for either $\frac{2}{5x^2}$ or $\frac{2}{5}x^{-2}$ or $0.4x^{-2}$ or $\frac{0.4}{x^2}$.	
	Note: $\left(\sqrt{\left(\frac{25x^4}{4}\right)}\right)^{-1}$ is not enough work by itself for the method mark.	
	Note: A final answer of $\frac{1}{\frac{5}{2}x^2}$ or $\frac{1}{2\frac{1}{2}x^2}$ or $\frac{1}{2.5x^2}$ is A0.	
	Note: Also allow $\pm \frac{2}{5x^2}$ or $\pm \frac{2}{5}x^{-2}$ or $\pm 0.4x^{-2}$ or $\pm \frac{0.4}{x^2}$ for A1.	

Question	Scheme	Marks	
Number		Warks	
3.	$\left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\} = \frac{2}{\left(\sqrt{12}-\sqrt{8}\right)} \times \frac{\left(\sqrt{12}+\sqrt{8}\right)}{\left(\sqrt{12}+\sqrt{8}\right)}$ Writing this is sufficient for M	M1. M1	
	$= \frac{\left\{2\left(\sqrt{12} + \sqrt{8}\right)\right\}}{12 - 8}$ For 12 - This mark can be implied	8	
	$= \frac{12 - 8}{12 - 8}$ This mark can be impli	ed. A1	
	$= \frac{2(2\sqrt{3}+2\sqrt{2})}{12-8}$	B1 B1	
	$=\sqrt{3}+\sqrt{2}$	A1 cso 5	
	Notes		
	M1: for a correct method to rationalise the denominator.		
	1 st A1: $(\sqrt{12} - \sqrt{8})(\sqrt{12} + \sqrt{8}) \to 12 - 8$ or $(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) \to 3 - 2$		
	1 st B1: for $\sqrt{12} = 2\sqrt{3}$ or $\sqrt{48} = 4\sqrt{3}$ seen or implied in candidate's working.		
	2nd B1: for $\sqrt{8} = 2\sqrt{2}$ or $\sqrt{32} = 4\sqrt{2}$ seen or implied in candidate's working.		
	2nd A1: for $\sqrt{3} + \sqrt{2}$. Note: $\frac{\sqrt{3} + \sqrt{2}}{1}$ as a final answer is A0.		
	Note: The first accuracy mark is dependent on the first method mark being awarded.		
	Note: $\frac{1}{2}\sqrt{12} + \frac{1}{2}\sqrt{8} = \sqrt{3} + \sqrt{2}$ with no intermediate working implies the B1B1 marks.		
	Note: $\sqrt{12} = \sqrt{4}\sqrt{3}$ or $\sqrt{8} = \sqrt{4}\sqrt{2}$ are not sufficient for the B1 marks.		
	Note: A candidate who writes down (by misread) $\sqrt{18}$ for $\sqrt{8}$ can potentially obtain M1A0E		
	the 2 nd B1 will be awarded for $\sqrt{18} = 3\sqrt{2}$ or $\sqrt{72} = 6\sqrt{2}$		
	Note: The final accuracy mark is for a correct solution only. <u>Alternative 1 solution</u>		
	$\left\{\frac{2}{\sqrt{12} - \sqrt{8}}\right\} = \frac{2}{\left(2\sqrt{3} - 2\sqrt{2}\right)}$ B1 B1		
	$= \frac{1}{\left(\sqrt{3} - \sqrt{2}\right)} \times \frac{\left(\sqrt{3} + \sqrt{2}\right)}{\left(\sqrt{3} + \sqrt{2}\right)} \qquad M1$ marks places mark	e record the s in the relevant s on the grid.	
	$= \frac{\left\{ \left(\sqrt{3} + \sqrt{2} \right) \right\}}{3 - 2}$ A1 for 3 - 2		
	$=\sqrt{3}+\sqrt{2}$ A1		
	Alternative 2 solution		
	$\left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\} = \frac{2}{\left(2\sqrt{3}-2\sqrt{2}\right)} = \frac{1}{\left(\sqrt{3}-\sqrt{2}\right)} = \sqrt{3}+\sqrt{2} , \text{ or } \frac{2}{\left(2\sqrt{3}-2\sqrt{2}\right)} = \text{ with no incorrect working seen is awarded M1A1B1B1A1.}$	$\sqrt{3} + \sqrt{2}$	

Jan 2012 Mathematics Advanced Paper 1: Pure Mathematics 1

1	5	
		•

Question	Scheme	Marks
2. (a)	$\sqrt{32} = 4\sqrt{2}$ or $\sqrt{18} = 3\sqrt{2}$	B1
	$\left(\sqrt{32} + \sqrt{18} =\right) \underline{7\sqrt{2}}$	B1 (2)
(b)	$\times \frac{3-\sqrt{2}}{3-\sqrt{2}} \underline{\text{or}} \times \frac{-3+\sqrt{2}}{-3+\sqrt{2}} \text{seen}$	M1
	$\left[\frac{\sqrt{32} + \sqrt{18}}{3 + \sqrt{2}} \times \frac{3 - \sqrt{2}}{3 - \sqrt{2}}\right] \frac{a\sqrt{2}(3 - \sqrt{2})}{[9 - 2]} \rightarrow \frac{3a\sqrt{2} - 2a}{[9 - 2]} \text{ (or better)}$	dM1
	$= 3\sqrt{2}, -2$	A1, A1 (4)
ALT	$(b\sqrt{2}+c)(3+\sqrt{2}) = 7\sqrt{2}$ leading to: $3b+c=7$, $3c+2b=0$ e.g. $3(7-3b)+2b=0$ (o.e.)	M1 dM1
		6 marks
	Notes	
(a)	1 st B1 for either surd simplified 2 nd B1 for $7\sqrt{2}$ or accept $a = 7$. Answer only scores B1B1 NB Common error is $\sqrt{32} + \sqrt{18} = \sqrt{50} = 5\sqrt{2}$ this scores B0B0 but can use the get M1M1	ir "5" in (b) to
(b)	1 st M1 for an attempt to multiply by $\frac{3-\sqrt{2}}{3-\sqrt{2}}$ (o.e.) Allow poor use of brackets	
2 nd dM1 for using $a\sqrt{2}$ to correctly obtain a numerator of the form $p + q\sqrt{2}$ where p and q a non-zero integers. Allow arithmetic slips e.g. $21\sqrt{2} - 28$ or $3\sqrt{2} \times \sqrt{2} = 3$ Follow through their $a = 7$ or a new value found in (b). Ignore denominator. Allow use of letter a. Dependent on 1 st M1 So $3\sqrt{32} - \sqrt{64} + 3\sqrt{8} - \sqrt{36}$ is M0 until they reduce $p + q\sqrt{2}$		$\overline{2} = 3$
	1 st A1 for $3\sqrt{2}$ or accept $b = 3$ from correct working 2 nd A1 for -2 or accept $c = -2$ from correct working	
ALT	2 nd A1 for -2 or accept $c = -2$ from correct working Simultaneous Equations 1 st M1 for $(b\sqrt{2}+c)(3+\sqrt{2}) = 7\sqrt{2}$ and forming 2 simultaneous equations. Ft their $a = 7$ 2 nd dM1 for solving their simultaneous equations: reducing to a linear equation in one variable	

May 2011 Mathematics Advanced Paper 1: Pure Mathematics 1

Question Number	Scheme	Marks
1. (a)	5 (or ±5)	B1 (1)
(b)	$25^{-\frac{3}{2}} = \frac{1}{25^{\frac{3}{2}}}$ or $25^{\frac{3}{2}} = 125$ or better	M1
	$\frac{1}{125} \text{ or } 0.008 \qquad \text{(or } \pm \frac{1}{125} \text{)}$	A1
		(2)
	Notes	
	(a) Give B1 for 5 or ± 5 Anything else is B0 (including just -5)	13
	(b) M: Requires reciprocal OR $25^{\frac{3}{2}} = 125$	
	Accept $\frac{1}{5^3}, \frac{1}{\sqrt{15625}}, \frac{1}{25\times 5}, \frac{1}{25\sqrt{25}}, \frac{1}{\sqrt{25^3}}$ for M1	
	Correct answer with no working (or notation errors in working) scores both M1A0 for - $\frac{1}{125}$ without + $\frac{1}{125}$	marks i.e. MI Al
	120 120	

Jan 2011 Mathematics Advanced Paper 1: Pure Mathematics 1

Scheme	Marks
$16^{\frac{1}{4}} = 2$ or $\frac{1}{16^{\frac{1}{4}}}$ or better	M1
$\left(16^{-\frac{1}{4}}\right) = \frac{1}{2} \text{ or } 0.5$ (ignore ±)	A1
	(2)
$\left(2x^{-\frac{1}{4}}\right)^4 = 2^4 x^{-\frac{4}{4}}$ or $\frac{2^4}{x^{\frac{4}{4}}}$ or equivalent	M1
$x\left(2x^{-\frac{1}{4}}\right)^4 = 2^4$ or 16	A1 cao
	(2) 4
	$16^{\frac{1}{4}} = 2$ or $\frac{1}{16^{\frac{1}{4}}}$ or better $\left(16^{-\frac{1}{4}} = \right) \frac{1}{2}$ or 0.5 (ignore \pm)

	Notes	
(a)	M1 for a correct statement dealing with the $\frac{1}{4}$ or the – power	
	This may be awarded if 2 is seen or for reciprocal of their $16^{\frac{1}{4}}$ s.c ¹ / ₄ is M1 A0, also 2 ⁻¹ is M1 A0 $\pm \frac{1}{2}$ is not penalised so M1 A1	
(b)	M1 for correct use of the power 4 on both the 2 and the <i>x</i> terms A1 for cancelling the <i>x</i> and simplifying to one of these two forms. Correct answers with no working get full marks	

Question Number	Scheme	Marks
3.	$\frac{5-2\sqrt{3}}{\sqrt{3}-1} \times \frac{\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)}$	M1
	$=\frac{\dots}{2}$ denominator of 2	A1
	Numerator = $5\sqrt{3} + 5 - 2\sqrt{3}\sqrt{3} - 2\sqrt{3}$	M1
	So $\frac{5-2\sqrt{3}}{\sqrt{3}-1} = -\frac{1}{2} + \frac{3}{2}\sqrt{3}$	A1
		4
	Alternative: $(p+q\sqrt{3})(\sqrt{3}-1) = 5-2\sqrt{3}$, and form simultaneous	M1
	equations in p and q - $p + 3q = 5$ and p - $q = -2$	A1
	Solve simultaneous equations to give $p = -\frac{1}{2}$ and $q = \frac{3}{2}$.	M1 A1
	Notes	
	 1st M1 for multiplying numerator and denominator by same correct expression 1st A1 for a correct denominator as a single number (NB depends on M mark) 	
	2^{nd} M1 for an attempt to multiply the numerator by $(\sqrt{3} \pm 1)$ and get 4 terms v	with at least 2
	correct.	
	2^{nd} A1 for the answer as written or $p = -\frac{1}{2}$ and $q = \frac{3}{2}$. Allow -0.5 and 1.5.	(Apply isw if
	correct answer seen, then slip writing $p =, q =$)	
	Answer only (very unlikely) is full marks if correct - no part marks	

May 2010 Mathematics Advanced Paper 1: Pure Mathematics 1

1	0	
4	L9.	

Question Number	Scheme	Marks	
1.	$(\sqrt{75} - \sqrt{27}) = 5\sqrt{3} - 3\sqrt{3}$	M1	
	$\left(\sqrt{75} - \sqrt{27}\right) = 5\sqrt{3} - 3\sqrt{3}$ $= 2\sqrt{3}$	A1	2
	Notes		
	M1 for $5\sqrt{3}$ from $\sqrt{75}$ or $3\sqrt{3}$ from $\sqrt{27}$ seen anywhere		
	A1 for $2\sqrt{3}$; allow $\sqrt{12}$ or $k = 2, x = 3$ allow $k = 1, x = 12$		
	Some Common errors $\sqrt{75} - \sqrt{27} = \sqrt{48}$ leading to $4\sqrt{3}$ is M0A0		
	$25\sqrt{3} - 9\sqrt{3} = 16\sqrt{3}$ is M0A0		

Jan 2010 Mathematics Advanced Paper 1: Pure Mathematics 1

Question number	Scheme	Marks	
Q2	(a) $(7 + \sqrt{5})(3 - \sqrt{5}) = 21 - 5 + 3\sqrt{5} - 7\sqrt{5}$ Expand to get 3 or 4 terms	M1	
	=16, $-4\sqrt{5}$ (1 st A for 16, 2 nd A for $-4\sqrt{5}$) (i.s.w. if necessary, e.g. $16-4\sqrt{5} \rightarrow 4-\sqrt{5}$)	A1, A1	(3)
	(b) $\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$ (This is sufficient for the M mark)	M1	
	Correct denominator without surds, i.e. $9-5$ or 4	A1	
	$4 - \sqrt{5}$ or $4 - 1\sqrt{5}$	A1	(3)
			[6]

(a) M1: Allowed for an attempt giving 3 or 4 terms, with at least 2 correct (even if unsimplified). e.g. $21 - \sqrt{5^2} + \sqrt{15}$ scores M1. Answer only: $16 - 4\sqrt{5}$ scores full marks One term correct scores the M mark by implication, e.g. $26-4\sqrt{5}$ scores M1 A0 A1 (b) Answer only: $4 - \sqrt{5}$ scores full marks One term correct scores the M mark by implication, e.g. $4 + \sqrt{5}$ scores M1 A0 A0 $16 - \sqrt{5}$ scores M1 A0 A0 Ignore subsequent working, e.g. $4 - \sqrt{5}$ so a = 4, b = 1Note that, as always, A marks are dependent upon the preceding M mark, so that, for example, $\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3+\sqrt{5}}{3-\sqrt{5}} = \frac{\dots}{4}$ is M0 A0. Alternative $(a+b\sqrt{5})(3+\sqrt{5})=7+\sqrt{5}$, then form simultaneous equations in a and b. M1 Correct equations: 3a + 5b = 7and 3b + a = 1A1 a = 4b = -1and A1

Question Number	Scheme	Mai	rks
8.			
(a)	Graph of $y = 7^x$, $x \in \mathbb{R}$ and solving $7^{2x} - 4(7^x) + 3 = 0$		
	y ▲ At least two of the three criteria correct. (See notes below.)	B1	
	All three criteria correct.	B1	
	(See notes below.)		
	(0,1)		
	•		(2)
(b)	Forming a quadratic {using $y^2 - 4y + 3 \{= 0\}$ $"y" = 7^x$ }.	M1	
	$y^2 - 4y + 5 \{ = 0 \}$ $y^2 - 4y + 3 \{ = 0 \}$	A1	
	{ $(y-3)(y-1) = 0$ or $(7^{x}-3)(7^{x}-1) = 0$ }		
	$y = 3$, $y = 1$ or $7^{x} = 3$, $7^{x} = 1$ Both $y = 3$ and $y = 1$.	A1	
	$\{7^x = 3 \Rightarrow\} x \log 7 = \log 3$ A valid method for solving		
	or $x = \frac{\log 3}{\log 7}$ or $x = \log_7 3$ $7^x = k$ where $k > 0, k \neq 1$	dM1	
	x = 0.5645 0.565 or awrt 0.56	A1	
	x = 0 $x = 0$ stated as a solution.	B1	
			(6) [8]
	Notes		[-]
(a)	B1B0: Any two of the following three criteria below correct.		
	B1B1: All three criteria correct. Criteria number 1: Correct shape of curve for $x \ge 0$.		
	Criteria number 2: Correct shape of curve for $x < 0$.		
	Criteria number 3: (0, 1) stated or 1 marked on the y-axis. Allow (1, 0) rather than (0,	1) if	
	marked in the "correct" place on the y-axis.		
(b)	1 st M1 is an attempt to form a quadratic equation {using " y " = 7 ^s .}		
	1 st A1 mark is for the correct quadratic equation of $y^2 - 4y + 3 \{= 0\}$.		
	Can use any variable here, eg: y, x or 7^x . Allow M1A1 for $x^2 - 4x + 3 \{=0\}$.		
	Writing $(7^x)^2 - 4(7^x) + 3 = 0$ is also sufficient for M1A1.		
	Award M0A0 for seeing $7^{x^2} - 4(7^x) + 3 = 0$ by itself without seeing $y^2 - 4y + 3 = 0$	or	
	$(7^x)^2 - 4(7^x) + 3 = 0.$		
	1^{st} A1 mark for both $y = 3$ and $y = 1$ or both $7^x = 3$ and $7^x = 1$. Do not give this acc		
	mark for both $x = 3$ and $x = 1$, unless these are recovered in later working by candidate applying logarithms on these	e	
	applying logarithms on these. Award M1A1A1 for $7^x = 3$ and $7^x = 1$ written down with no earlier working.		
	3^{rd} dM1 for solving $7^x = k, k > 0, k \neq 1$ to give either $x \ln 7 = \ln k$ or $x = \frac{\ln k}{\ln 7}$ or $x = \log_7 k$.		
	dM1 is dependent upon the award of M1.	-	
	2^{nd} A1 for 0.565 or awrt 0.56. B1 is for the solution of $x = 0$, from <i>any</i> working.		